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Characters 

The transport  of vorticity is analysed for a compressible, inviscid flow which is steady relative to a 
reference frame rotating at constant  angular  velocity. It is shown that Helmholtz 's vorticity convection 
theorem does not apply to this flow but nevertheless the vortex lines are transported on a streamsurface 
which therefore corresponds to the familiar Bernoulli surface. 

Explicit, integrated results are obtained for Bernoulli surfaces of any geometry. The transport  of the 
normal  component  of vorticity is obtained for the general case in closed form, whereas the transport  of the 
streamwise component  is closed in form for some cases but involves a time difference integral over 
the bounding streamlines. 

Application is made to a turbomachine blade row where the flow between two consecutive blades is 
examined. Explicit results are obtained for the streamwise vorticity development in the axial flow 
configuration in terms of the traverse time integral for a particle, taken around the blade profile. The m o r e  
general mixed flow configuration is also examined where a closed result is obtained only for the i n c o m -  
pressible case. 

N O M E N C L A T U R E  

A cross sectional area 
C constant 
C v specific heat at constant pressure 
dS elemental surface vector 
h enthalpy 
I rothalpy [ ~  h + (W 2 - U2)/2] 
K compressibility factor (see eq. (2.14)) 
k isentropic gas index 
l contour length 
M relative Mach number 
rn mass flow rate 
N contour orthogonal to streamlines 
n unit vector normal to Bernoulli surface 
p pressure 
R location vector 
r radius vector 
S surface 
s entropy 
s' blade pitch 
s" distance along streamline 
T temperature 
t time 
t' Bernoulli sheet thickness 
U blade speed 
V absolute velocity vector 
W relative velocity vector 
z axial co-ordinate 

fluid deflection on Bernoulli surface 
6 finite small quantity 
p density 
f~, rotational speed vector 
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to absolute vorticity vector 
¢o' relative vorticity vector 

Subscripts 
0 absolute stagnation value 
1 upstream 
2 downstream 
A edge of Bernoulli sheet at N = 0 
B edge of Bernoulli sheet at extremity of N 
r, 0, z co-ordinate direction or components (radial, 

tangential or axial respectively) 
or relative stagnation value (temperature) 
n component in direction normal to Bernoulli 

surface 
N component normal to stream but tangent to 

Bernoulli surface 
W component in direction of stream 

Superscripts 
mean value (vorticity) 

Symbols 
closed integral 

x vector product 
scalar product 

iO/Ot)~ time derivative at fixed location/~ 
grad vector operator (gradient) 
div vector operator (divergence) 
curl vector operator 

I N T R O D U C T I O N  

Previous work in the field of vorticity convection has 
been applied predominantly to incompressible flow and 
relies heavily on Hawthorne's pioneering work (1). Hor- 
lock and Lakshminarayana (2) developed the incom- 
pressible case for the inclusion of laminar viscous effects 
while Marris (3) considered application to a rotating 
frame of reference for incompressible flow with stratified 
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density. Smith (4) analysed incompressible flow in a ro- 
tating passage. Loos (5) appears to have considered the 
effect of compressibility on vortlclty convection but he 
was unable to obtain an explicit expression for the 
development of the streamwise vorticity component. 
Previous workers mentioned above also failed to obtain 
expressions for the development of streamwise vorticity 
which were explicit in kinematic terms, the awkward 
vector product of vorticity and velocity being eliminated 
by substitution of the gradient of the stagnation pressure 
from the equation of motion• Marsh (6) presents an ex- 
plicit result for a rectilinear, stationary cascade. 

All previous work has been left either in general vector 
terms prior to application to a specified geometry (7), (8) 
or has been expressed in terms relating to intrinsic co- 
ordinates of the particle path, involving the principal 
radius of curvature and its normal. Generally, neither of 
these representations lend themselves to easy visual 
interpretation in three-dimensional flows, the radius of 
curvature and the stagnation pressure gradient changing 
in both magnitude and direction as the particle 
proceeds. 

The present paper derives generalized, explicit results 
for the development of both normal and streamwise vor- 
ticity in compressible flow on Bernoulli-like surfaces 
which rotate about a fixed axis. The latter feature 
enables application to be made to rotating turbo- 
machinery blade rows. The turbomachine designer is 
used to visualizing flow on cylindrical Bernoulli surfaces 
and to handling the deflection of the flow on such sur- 
faces. Accordingly, the present paper develops the theory 
in relation to the geometry of a generalized Bernoulli 
surface and deflections of the flow on that surface which 
in general has some twisted form. It should be ap- 
preciated that the principal radius of curvature of the 
flow on such a surface does not generally lie in the tan- 
gent plane to the surface and may pass from one side of 
the surface to the other in a complex way. The results 
presented are explicit in kinematic terms for the incom- 
pressible case because both vorticity components are 
solved for and it transpires that the development of the 
normal component leads to an integrated result, even for 
the compressible flow in the rotating reference frame. In 
the compressible case the expressions while still being 
intrinsically explicit are left with density terms intact to 
simplify presentation, though suitable equations of state 
together with the equation of motion enable results to be 
obtained in entirely kinematic terms. It is found that in 
the case of a stationary reference frame the development 
of the streamwise vorticity in compressible flow can be 
expressed in an integrated form in terms of particle time 
lapse. 

1 V O R T I C I T Y  C O N V E C T I O N  IN C O M P R E S S I B L E  F L O W  

Loos (5) obtained an expression for the convection of 
the streamwise vorticity component COw in an inviscid, 
compressible fluid in the absolute (i.e., inertial) reference 
frame by taking the identity for the triple vector product 

V × (V × to) = V(Wov - toY) (1.1) 

where 

to - curl V (1.2) 

and substituting for (V x to) from the equation of 
motion. The term on the right-hand side in co can be 
eliminated by taking the divergence of (1.1) but the sub- 
stitution from the equation of motion merely replaces 
(V x to) by gradients of thermodynamic properties. 

Marris (3), treating incompressible flow in a rotating 
reference frame, commenced with the expression 

(w ) (W grad) 2 • =w-R-; x (W × to'). n' 

W 
W2 . curl (W x to') (1.3) 

which is an identity subject to the condition that 
div W = 0. This result may be modified for compressible 
flow by imposing the continuity equation 

W 
div W - . grad p (1.4) 

P 

on its derivation, when it can be shown that 

(W.  grad)[ ~o~, 1 
 pW! 

p I WR x (W × to'). n' - - ~ .  curl (W x ¢o') 

(1.5) 
Equations (1.1) or (1.5) could be used as a starting 

point for the present work but in order to discuss impor- 
tant features ofvorticity convection in compressible flow 
it is necessary, and involves no more work, to commence 
with the equation of motion itself, adapted for applica- 
tion to a rotating reference frame and familiar to wor- 
kers in the turbomachinery field, viz. 

(0w) 
+to  x W + g r a d I - T g r a d s = 0  (1.6) 

Here R locates a point in the rotating reference frame 
and to is the vorticity in the inertial frame. By using the 
unsteady continuity eq. (A.I) and taking the curl of 
eq. (1.6) we obtain a general expression for vorticity 
convection at eq. (A.3) viz: 

d ( p )  to 1 
= p .  grad W + P - grad T x grad s (1.7a) 

which is applicable to unsteady flow. Because this equa- 
tion applies to unsteady flow it takes the same form for 
the rotating reference frame as for the inertial frame. 
However, the vorticity to is always the inertial vorticity 
while W is the particle velocity relative to the reference 
frame under consideration. 

For incompressible flow eq. (1.7a) takes the form: 

do) 
dt to . grad W (1.7b) 

which states that the vorticity vector to is carried by the 
fluid particles and is the familiar Helmholtz vorticity 
convection theorem. In compressible flow eq. (l.7a) 
shows that neither the vorticity vector to nor its modified 
compressible form (to~p) is simply carried by the fluid 
motion when entropy gradients exist in the flow. 

INT. J, HEAT & FLUID FLOW Vol I No I 
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In what follows we shall consider flows which are in- 
viscid and adiabatic and therefore isentropic (i.e., 
(ds/dt) = 0) but not homentropic (i.e., grad s ~ 0). It fol- 
lows from the conservation of energy that for such flows 
(dl/dt) = 0. We restrict attention to flows which far 
upstream are characterized by possessing contours on 
each of which both I and s are constant, but the constant 
is different for different contours. By the above, the fluid 
particles crossing these contours form streamsurfaces on 
which both I and s will always be constant. In relative 
steady flow, it follows from eq. (1.6) that the vorticity 
vectors to, like the velocity vectors W, are tangent to this 
surface and in this sense it is like a Bernoulli surface. 
However, it is not yet demonstrated that the vorticity 
vectors are transported along these surfaces by the flow. 

Let the unit vector normal to the above Bernoulli-like 
surface be n. The term to /p .  grad W in (1.7a) states that 
(to/p) is carried by the fluid and therefore develops no 
n-component, however the term 1/p grad T × grad s 
states that there is a further change in (to/p) and there- 
fore (to~p) is only transported along this Bernoulli-like 
surface if its n-component (i.e., n .  (I/p) grad T x 
grad s) is zero. Now since this is a surface of constant 
entropy then: 

0s 
grad s = n c3~--1 (1.8) 

and it follows that for steady relative flow 

1 
[ ] . - g r a d  T x  grads  

P 

1 Os 
= n . - g r a d T  × [] ~ 0  (1.9) 

p 

Hence, although (to/p) is not simply carried with the 
fluid particles it is nevertheless transported over this 
Bernoulli-like surface by the fluid motion. 

In the subsequent development it is found convenient 
to employ a local orthogonal co-ordinate system 
n-N-(W/W) forming a right-handed set, where (see Fig. 
1) 
W / W  = unit vector in the relative stream direction and 

therefore tangent to the Bernoulli-like surface; 
n = unit vector normal to the Bernoulli-like surface; 

N = unit vector tangent to the Bernoulli-like surface 
but normal to W. 

From these definitions it follows that: 

W 
n x N = ~  (1.10a) 

W 
N x - - =  n (1.lOb) 

W 

W 
- -  x n = N (1.10c) 
W 

Now that the similarity of the above surface to a Ber- 
noulli surface has been established, it is henceforward 
referred to by this appellation. 

~ Relative 
streamlines 

"~-'"L"~p'~ A \  l / ~  Relative streamsurface 
.~t e O ~  l / / ' f  l ~ r  oulli-like surface] 

e %f \ \ / J ' 3 _  _ + / 6  z 
s~r'ea m-lU b e ~ /R / . j "  "" 

~ 'O ~, 

Fig. 1. lllustrating features of an arbitrary relative streamsheet and 
the local co-ordinate system 

2 CONVECTION OF THE VORTICITY C O M P O N E N T S  

We may resolve the vorticity vector to in any direction 
indicated by a unit vector b, thus 

CO b = to . b (2.1) 

hence 

= ~  = ~  . b + - . p  ~-  (2.2) 

when by eq. (1.7a) 

= b .  p . g r a d  W 

co db b 
+ p . ~ + p . g r a d  T × g r a d s  (2.3) 

It has been established that o9, is zero, hence we may 
express to in terms of its streamwise (COw) and normal 
(CON) components only (see Fig. 1). 

Consider first the normal component, then b = N and 
as derived at (A.27), eq. (2.2) may be written: 

d (  W2 - U 2) 
dt con Wt' + C1 ~ = 0 (2.4) 

where t' is the normal thickness of the Bernoulli sheet. 
This may be integrated for the particle, along the stream- 
line, to yield the following result which agrees with 
Marsh (6) for a non-rotating, rectilinear cascade of 
blades in a Bernoulli sheet of constant thickness 

W 2 _ U z 
C2 C1 (2.5) 

CON- Wt' 2Wt'  

where 

while 

' (Os) and is dimensionless (2.6) 

- 

C2 = CON, 14/1 t'l + C1 2 (2.7a) 
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28 C. BOSMAN 

by eq. (1.6) and eq. (2.6) 

1 ( 0 1 ) }  _ ~ , W ' t "  ] i  + - -  (2.7b) 
Cp7"1 I t 'ON, W, ~ , 

where subscript 1 designates any arbitrary reference 
point on the Bernoulli surface. 

Considering now the vorticity component resolved in 
the streamwise direction, then b =  (W/W) and as 
derived at (A.42), eq. (2.2) may be written: 

dt pW2t ' ~ + ~ " n 

( °: ) C~ ~ n +  N r (2.8) 
pt' " W " 

where du is the change in stream direction measured on 
the relative streamsurface (i.e., about n), the sign being 
taken from eq. (A.14) viz: 

d ~ N ( W }  = - N  dc~ (2.9) 

Unlike the equation for the normal vorticity the 
streamwise vorticity eq. (2.8) is not in the general case 
integrable explicitly in terms of the angle ~. The alterna- 
tive form in terms of the particle traverse time t given at 
eq. (A.51) viz: 

d [COw I -  2C2 + C, U 2 3(dt) dN 

~pW ] 2 d~h ~N dt 
( °2 ) 

Ct ~ n +  N r (2.10) 
pt' " W " 

can be integrated along the flow for a rotating cylindri- 
cal Bernoulli surface, when U = constant and E~. n = 
0 =  N .  r, or for any Bernoulli surface in the 
non-rotating case when E~ = 0 = U. In eq. (2.10), from 
eq. (A.50), 

drh = pWt' d N =  constant (2.11) 

is the mass flow rate along a streamtube of normal width 
dN on the Bernoulli surface, t is the time for a particle to 
traverse a distance along the streamtube. 

Since the two integrable cases above reduce to the 
same general form they can be developed as a common 
case, when eq. (2.10) becomes: 

d (COw) O(dt) dN 

which upon integration along the streamtube yields 

t = C3 ~ dN (2.12) 

where (3t/3N). dN is the time difference that particles 
on adjacent streamlines separated by normal distance 
dN take to traverse between normals N t and N2. 

In this case from eq. (2.7) 

C 1 U 2 
C2 + 2 --t°N'Wtt'lK (2.13) 

where 

1 I, - + - -  (2.14) 

For a constant energy flow field grad I = 0, then 

1 
when for a gas 

K = I + - -  W 2 _ Tot k -  1 M2 (2.16) 
2Cp T~ T1 - 1 + ~ 

where M is the relative Mach number and T,, r is the 
relative stagnation temperature. 

If we consider a Bernoulli surface which has uniform 
upstream flow so that all quantities are constant along 
N~ (see Fig. 2), the upstream normal, then by reference 
to eqs. (2.10) and (2.11), (2.12) may be written 

3(0 [¢Owt' dN] 2 = (constant) ~ -  dN (2.17) 

where by eq. (2.13) 

constant = - (  C2 + C1 ~ ) = --WN, Wl t'1K 

is now constant along streamlines and across the 
upstream flow and is therefore a unique constant for the 
whole Bernoulli surface. 

Equation (2.17)may now be integrated across the flow 
from A to B along the normals to give: 

.B 

[ (,Owt' dN)2 = (~Owt'N)t -,ON l W,t'lK(tn - t A )  
" A  

(2.18) 

t'l N t (ON, Wt t't K 
Ogw: = ~Owl A2 .4 2 (tI3 - tA) 

(2.19) 

where COw, is the sheet cross-sectional area mean value 
of COw: on N 2 defined by 

COw, = ]'BA O)w:t'~ dN2 _ j" ,Ow., dA_,  (2.20) 
- ~BA t'2 dN2 ,4,_ 

A 

Fig. 2. Illustrating features of a relative streamtube 
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THE TRANSPORT OF VORTICITY ON ROTATING BERNOULLI SURFACES 29 

then by continuity 

pxW, A, =paW, t',N1 =pzWzA 2 (2.21) 

eq. (2.19) may be written 

~)w2 = P2 W2 ( (,°N, W, K ) 
P l ~  tow: N ~  (t13 -- tA) (2.22) 

This result is of special interest because it demon- 
strates that the conversion of normal vorticity into 
streamwise vorticity in compressible flow depends on 
the difference of time taken for particles to travel be- 
tween normals along the bounding streamlines A and B. 
A similar conclusion can be deduced in incompressible 
flow by applying the Kelvin theorem which states that 
the vorticity vector is carried by the fluid particles. 
However, as discussed earlier, in compressible flow the 
vorticity vector is not so carried. 

If the flow detail on the Bernoulli surface has been 
determined by some suitable method (9)-(11) eqs. (2.5) 
and (2.8) or (2.10) (or where applicable (2.19)) may be 
used to determine the vorticity distribution. Usually it is 
the relative vorticity m' that is required. This may be 
recovered from the relationship: 

to = o '  + 2f~ (2.23) 

when resolving components gives: 

/-O N = /-O N - -  2N . f~ = ~o N - 2 f~N~ (2.24a) 

, W 
COw = U)w - 2 ~ .  E~ = C,)w - 2f2 W,_W (2.248) 

3 SMALL PERTURBATION ANALYSIS 

Consider small perturbations of a rotating cylindrical 
Bernoulli surface then n = if/r) and 

E ~ .  n = 0 = N .  r ( 3 . 1 )  

or for a general stationary Bernoulli surface then eqs. 
(2.5) and (2.8) yield 

f ( O N  ( C I W  ) f W  6[' 
¢,,~- ~ o ~  7 + 1  W t' 

f(,O w 6 W f p  ( (_O N 

(,O~v-v - W + - 2  - -  p ~ tow 

[U] 2 C 1 W fr 
-]- [ W ] (,0 N t' I ° 

(3.2) 

C1W 1 
+ 2(,Ow t ~ I &¢ (3.3) 

It can be seen from eq. (3.2) that for compressible flow 
(Cl # 0) on a rotating Bernoulli surface (U # 0), the 
surface distortion has a first order effect on the develop- 
ment of the normal vorticity as evidenced by the term in 
&'/r. This effect is absent on a stationary Bernoulli sur- 
face and is always absent from the streamwise vorticity 
development, eq. (3.3). 

Using the continuity equation 

6 W 6p 6,4 
+--p + 7 = 0  (3.4) 

for a streamtube, where A is the streamtube normal sec- 
tion area, eqs. (3.2) and (3.3) may be written 

~{O N = -- 1 7!- /-ON t' I W t' + /-ON t' r I"/-ON 

(3.5) 

&°w - fA ( Ct W] &t 
70Jw - 209N 1 + ~ I  (3.6) 

Equation (3.5) demonstrates that the normal vorticity 
undergoes simple amplification with no interaction from 
the streamwise vorticity. This amplification occurs as a 
consequence of velocity diffusion (fW < 0), decreasing 
Bernoulli sheet thickness (fit' < 0) or, if rotation is pre- 
sent (U # 0), with increase in radius ( f r >  0) for com- 
pressible flow (C1 > 0). The effect of compressibility 
(C~ > 0) is to increase the velocity diffusion effect. It can 
be seen from eq. (2.16) that for constant energy flows 
(grad I = 0) the term 

when 

c,,_w +L 2 M2 
(1 + 2t¢ON) = =1 (3.7) 

CIW 
- ( k  - 1 ) M  2 ( 3 . 8 )  

t 'to N 

so that this factor is anticipated to be positive in sign. It 
is interesting to note that surface deflection itself has 
no effect. It will be seen from eq. (3.5) that Loos' (5) 
assumption of the constancy of o) N when fit' = 0 = U is 
not correct, except for a flow with zero diffusion 
(6W-- O) which is not a boundary layer situation. 

Equation (3.6) demonstrates that the streamwise vor- 
ticity is amplified by a decreasing streamtube area while 
normal vorticity is converted to streamwise vorticity by 
the flow deflection on the Bernoulli surface. Equation 
(3.5) suggests that this conversion is increased by 
compressibility. Loos (5) demonstrated this conversion 
effect for stationary Bernoulli surfaces in a thin boun- 
dary layer, but the above development shows that the 
result is applicable to rotating Bernoulli surfaces and is 
independent of his assumptions of the constancy of co N 
and (tgTfi?n) or that (@/cfn) = 0 which would only apply 
to plane Bernoulli surfaces. It is clear that Loos' (5) 
results are applicable to boundary layer development on 
a turbomachine rotor hub. 

For the special case of incompressible flow (C~ = 0) 
with zero streamwise entry vorticity (,Ow = 0, eq. (3.6) 
reduces to the familiar result of Squire and Winter (13) 
viz 

6r~v = - 2¢~o N 60¢ (3.9) 

which is in fact independent of the constancy of W, for 
small deflections. 

4 APPLICATION TO TURBOMACHINE 
BLADE CASCADES 

Consider an annular cascade of blades producing a finite 
flow deflection on Bernoulli surfaces which are distorted 
only slightly from circular cylinders. In this 
configuration (Fig. 3) the surface normal direction n has 
been taken as radially outwards so that positive 
deflection (d~) in the figure, is towards the meridional 
plane. 

The conditions 

. n = N . r = d U  = 0 ( 4 . 1 )  

apply to this surface so that eq. (2.22) is applicable to 
the flow. The upstream and downstream normals, N 1 
and N2 respectively, are shown in the figure and the 
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Cylindricol Be rnou l l i - l i ke  surfoce 

Fig. 3. Details of flow th rough  consecut ive blades on a circular cylin- 
drical s t reamsurface  

traverse times tA and tB of eq. (2.22) become the times 
to traverse paths AG and BE respectively. Upstream and 
downstream of the blades the flow is considered periodic 
over the angular blade pitch so that 

tKj = tBc (4.2a) 

triG = /DE (4.2b) 
n o w  

tBE - t A G  = ( t . v  - t E E ) -  ( t K c  - tKA) 

= (tBc + teD + tDV --  tEF ) 

- -  (tKj + tjH + triG -- tKA ) 
by periodicity 

= - ( t in  - tCD) -- tEE + tKA (4.3) 

but in the downstream and upstream uniform flow 

and 

- s '  sin 0[2 
tEE -- (4.4) 

W2 

- s '  sin 011 
tKA - (4.5) 

wl 
while 

tjH - -  t e d  = ~ dt (4.6) 
d blade 

is taken around the blade in the sense of positive n and is 
in sign agreement with Hawthorne (7). Substituting 
eqs. (4.3), (4.4), (4.5), (4.6)in eq. (2.22) we obtain 

. p 2 W 2  ] CON, W 1 K  

C°w2 P x  W l [  ( J ~ l  S ! COS 011 

j , [sin 0[2 sin 011 i L l1 j , L d . i l  ,47, 
where K is defined at eq. (2.14) and 

N1 = s' cos 011 (4.8) 

N2 = s' cos 0[2 (4.9) 

so that by eq. (2.20) 

~ 
O)W2 m I 

° 

J U)W2 COS 0[2 d s '  
s '  c o s  0[2 

= 1  t. Cow2 ds , 
S I • 

(4.10) 

is the pitch averaged downstream streamwise vorticity 
for constant t~. It should be observed that the angles 0[ 
(Fig. 3) measured to the axis of rotation are negative in 
order to comply with the condition that n = (r/r). The 
result, eq. (4.7), does not assume constant sheet 
thickness nor thin or closely spaced blades and is valid 
for a stator blade row independently of the twisting of 
the Bernoulli surface. However, with these restrictions 
applied, the results agree with Marsh (6). 

For incompressible flow with constant sheet thickness 

K =  1, Px =P2  

so that eq. (4.7) reduces to 

and 
1t/2 COS 011 

wl cos 0[2 

COS 011 CON 1 
~OW2 = (Owt 

COS 0[ 2 COS 011 COS 0[2 

x sin I ,411, 
which agrees with Marsh and Came (12) and with Loos 
(14) and Hawthorne (7) when COw, = 0, after observing 
the sign convention for 0[. However, Hawthorne's result 
applied only to closely spaced blades and while Marsh 
and Came follow an analysis which is applicable to 
blades of finite spacing, they do not define the mean 
value &w2 so obtained. Both the above analyses were 
applied to a plane Bernoulli surface but eq. (4.11) is 
applicable to a Bernoulli surface of any twist for a stator 
blade row. 

If one considers closely spaced blades of zero 
thickness under conditions of incompressibility and con- 
stant sheet thickness then the axial velocity W z is con- 
stant while 

dN = ds' cos 0[ (4.12) 

where ds' is the blade pitch and 

W z = W cos 0[ (4.13) 

so that the relationship between the time difference and 
the deflection at eq. (A.48) may be integrated along the 
flow thus: 

2 ~N-O(dt) [{ dS'wz ) 2 f, dN= ." 2cos 20[d0[ 
1 1 

ds' 
- (½ sin 20[ + 0[)~ = t2 - t, 

Wz 

(4.14) 

where 1 is an upstream station and 2 a downstream 
station, but also by eqs. (4.3), (4.4), (4.5) and (4.6). 

t2 - tx = - d s '  sin 011 - -  
COS 0[t 

Wz 

c o s  0[2 fbladc +ds 's in0[2  Wz • , d t  

ds' {½(sin 20[ 2 sin 20[ 1)} fblad~ dt 
W z , • 

(4.15) 
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therefore 

llbladc d t -  ds' • Wz (a2 - o ~ t )  (4.16) 

as shown by Came and Marsh (12). 
The direct effects of compressibility may be seen from 

eq. (4.7) where for given velocity vectors W~ and W2 
the integral 

( -Jib,.  d/) 

which has the same sign as 

/sin ~2 sin ~1 
Slav; w, ) 

will increase together with K (see eq. (2.16)). These 
combine to increase the rate of conversion of normal 
into streamwise vorticity. The effect of the density ratio 
(P2 ~P l) across the cascade is one of simple scaling of the 
upstream vorticity vector, the scaling factor being 
greater than unity for a compressor cascade and less 
than unity for a turbine cascade. 

For incompressible flow (Ct = 0, K = 1, Pt = P2) it 
will be observed that all terms relating to rotation in 
eq. (2.10) vanish and eq. (2.22) becomes: 

W2 {O)wt (-ON l WI tA) } (4.17) 

which applies to a rotating Bernoulli surface of any 
geometry which has uniform upstream conditions. If this 
is applied to perturbations of an axi-symmetric (Fig. 4) 
surface of the general turbomachine, then following the 
earlier part of this section but noting that the angles are 
measured to the meridional plane and that in eqs. (4.4) 
and (4.5) 

s'l = rl 0 (4.18) 

and 
J 

S 2 1"20 (4.19) 

\ . j  \ 

~ z r W~ 

Fig. 4. Details of flow through consecuttve blades on an arbitrary 
streamsurface of revolution 

where 0 is the angular blade pitch, then eq. (4.7) 
becomes 

w2 [ O~N, W, 
C O w 2 = w 1  cOw~ r t 0  cos0~l 

x {0(r2 sin ~2 ,'t sin ~1) }1 
W2 W1 - ~bt~dc dt 

(4.20) 

The flow in the vaneless annular diffuser of a centrifu- 
gal compressor, subsequent to leaving the impeller 
blades, may be analysed using eq. (4.20) with the time 
integral put equal to zero. 

The principal difficulty in applying eqs. (4.7) or (4.20) 
lies in the determination of the time integral which de- 
mands a knowledge of the blade surface velocity distribu- 
tion. Even with this knowledge, the evaluation of the 
integral is difficult if a stagnation point exists, such as 
will be the case for rounded leading edges or non-zero 
incidence if the blade has a cusped leading edge, which 
includes the case of zero thickness blades. As will be seen 
from eq. (A.44) a stagnation point leads to a singularity 
in the integrand. Analysis of plane incompressible flow 
around a circular cylinder shows that in fact particles 
approach but do not reach the stagnation points, so that 
in fact the time integral for flow over the surface from the 
forward to the rear stagnation point is infinite and the 
integral as well as the integrand is infinite. Of course it 
does not follow that the integral taken around the entire 
surface is infinite and other considerations suggest that 
this is not so. 

CONCLUSIONS 

It has been shown that in compressible flow, Helm- 
holtz's vorticity convection theorem does not apply but 
that nevertheless the vortex lines are transported by the 
fluid motion over a streamsurface which may therefore 
be regarded as a Bernoulli surface, because it has con- 
stant rothalpy. 

Equations for the development of the vorticity com- 
ponents on such a Bernoulli surface, of any geometry, 
which rotates about a fixed axis of rotation and is in a 
steady state in the rotating reference frame have been 
obtained for a particle in inviscid, compressible flow. 
The equation for the normal component ofvorticity can 
be obtained in an explicit, integrated form, eq. (2.5), in 
all cases. The equation for the streamwise vorticity com- 
ponent of a particle in terms of the fluid deflection a eq. 
(2.8), although explicit is not generally integrable but 
can be integrated for the case of incompressible flow on 
a rotating circular cylindrical Bernoulli surface with 
constant axial velocity (eqs. (4.11) and (4.14)). The 
streamwise vorticity component in terms of the differ- 
ence in time for particles to traverse the bounding 
streamlines of the Bernoulli surface can be integrated for 
the compressible flow for rotating circular cylindrical 
Bernoulli surfaces eq. (4.7). The case of compressible 
flow on a rotating radial Bernoulli sheet of constant 
thickness takes an explicit integral form if an equation of 
state relating density to velocity is used (e.g., a perfect 
gas) but is not developed here. 

For stationary Bernoulli surfaces of any geometry the 
compressible flow result is obtainable in an integrated 
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form in terms of the time difference previously men- 
tioned eq. (2.22). 

For  incompressible flow an integrated result is avail- 
able for rotating Bernoulli surfaces of any geometry in 
terms of the time difference (eq. (2.22) with Pl = Pz and 
K = I ) .  

A small perturbation analysis can be carried out 
which relates the basic flow features to the vorticity 
development. 

Application is made to turbomachine blade cascades 
which are represented by periodic flows around a single 
blade, on axi-symmetric Bernoulli surfaces. In this situa- 
tion the time difference for particles to traverse the 
bounding streamlines can be reduced, because of the 
periodicity condition, to the integral of the traverse time 
taken around the blade profile. A general result for in- 
compressible flow is given at eq. (4.20) and a compres- 
sible flow result for the case when the Bernoulli surface is 
a circular cylinder at eq. (4.7), the specific incompres- 
sible result for this, which is well known, is given at eq. 
(4.11). 
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that is, 

+ W .  grad to + to div W 

- to .  grad W - W div to 

- T curl grad s 

- g r a d  T x  g r a d s = 0  

+ W .  grad to + to div W - to .  grad W - 0 - 0 

- g r a d  T x  g r a d s = 0  

since curl grad = 0 div co = div curl V - 0 also 

_-0 
R 

Now by continuity 

1 dp 
- - -  + div W = 0 
p dt 

and particle convection 

d( ) _ 0 (  ) 
+ W .  grad ( 

dt 0tR 

the above may be written 

d to t o . g r a d W +  grad T x g r a d s  
dt p p 

When b = N then from eq. (13) 

~-~ = N .  p . g r a d  W 

to dN 
. . [ -  - -  _ _  

p dt 

but 

It w (to . grad)W = COw 

and since 

(A.1) 

(A.2) 

(A.3) 

N 
+ - - . g r a d  T x  g rads  

P 

(A.4) 

+ WNN)- g rad lW 

_ ~')w (W . grad)W + (ONN . grad W 
W 

t~v dW 

W dr 
+ oNN . grad W 

(A.5) 

APPENDIX 

Taking the curl of the equation of motion then 

N .  W = 0 (A.6) 

+co x W + g r a d  I -  T g r a d s  = 0  
R 

0 
0~ (curl W)m + curl (to x W) + 0 

- curl ( r  grad s) = 0 

0 = g r a d ( N . W ) - N . g r a d W + W . g r a d N  

+ N  x c u r l W + W  x c u r l N  

therefore in steady relative flow 

dN 
N . g r a d  W -  dt N x c u r l W - W  x c u r l N  
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and Now 
dN 

N . ( N . g r a d ) W =  - N .  d~ - N ' N  x c u r l W  

and 
- N . W  × curlN 

= 0 - 0 - N  x W . c u r l N  

(Note." dN/dt must be normal to N since N is unit 
vector) by eq. (8). hence 

= - W n .  curl N (A.7) co dN 

By continuity for the streamsheet of normal thickness p dt 
but by eq. (8) 

t ' =  t'n ( A . 8 )  
then dN 

=j:  p W . t '  x d l = f ,  pt'W x n . d i  (A.9) dt 0 
" l  1 

where dl is an element of contour drawn on the stream- 
surface, hence by definition of curl 

curl(pt'W x n ) -  Lt J: pt'W x n . d l  (A.10) n .  
l ~ 0  I 

by eqs. (9) and (8) then 

n . curl (pt'WN) = 0 

n . (pt'W curl N + grad (pt'W) x N) = 0 

pt'Wn . curl N + grad (pt'W) . N x n = 0 

W 
pt 'Wn,  curl N - ~ .  grad (pt'W) = 0 

therefore 

by eq. (14) 

by eq. (1.10) 

(0 = 0 "~- (1)N "~ 0 w 

): (7, )o +°+ )w 

_ow (aN) 
p 

d ( W )  wW dn - x n + - -  x - -  
d t  dt 

d(W) W (d.) 
: ~  W N X n + ~  × ~ N 

dc~ W (dn) 
= - N × n ~ + ~  × N 

W (; (6!) 
= + W d /  + × ? T N .  

and by eqs. (18) and (19) 

dN 

W Now 
Wn. curl N - . grad (pt'W) (A.11) 

pt'W 

Now by eqs. (7) and (11) for steady relative flow 

co w dc~ 

(A.16) 

p dt p dt 

(A.17) 

but 

(A.18) 

therefore 

while 

N .  grad T x grad s grad T.  grMt s x N 
P P 

1 d by eq. (1 .9 )  
N .  (N. grad)W = pt'W dt (pt'W) (A.12) 

(A.19) 

and by section 1 

d [ W I _  1 dW W dW byeq.(1.8) 
dt [W]  I~ ~ W 2 dt 

l dW d / W ~  W dW 
W dt - d t  [ W ) +  W 2 dt 

(A.13) 

(A.20) 

W) - N  dc~ (A.14) but d ~  N 

where dc~ is angular deflection of the stream vector W / W  
measured on the streamsurface (i.e., about n), hence 

N dW N (d  (W) W dW) 
W" d ~ -  " d-~ "+- W 2 dt 

( dc¢ N (A.15) 
= N .  - N ~  + - - -  ctt hence 

dc~ 
- + 0  

dt 

1 0s 
= -  grad T n 

p • 
x N  

1 W 0s  
- - - g r a d  T . - - - -  

p W On 

1 c~s dT 
Wp c?n dt 

(A.21) 

l : - C p T +  
W 2 _ 0 2 

(A.22) 

dI 
- - = 0  
dt 

d T _ - I  d ( w E - u  2) 

dt Cp dt 2 
(A.23) 
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Now s is constant on the streamsurface so that the differ- 
ence in s on two adjacent streamsurfaces separated by 
the normal distance t' is constant and may be written 

t t~ grad x s = t' . grad s (A.24) 

where subscript 1 refers to some arbitrary reference 
point on the streamsurface, say upstream. By eqs. (8) 
and (24) 

therefore by eqs. (29) and (30) 

hence by eq.(2.6) 

W ( p . g r a d ) W  to ( d ( _ ~ )  
- -  . = - -  . 

W P N 

tl (0~tsT) = t '  as 
1 Ot~ since to,, = 0 

as t',(Os) c~ 
O,~--t- ~ , =  f T-C1 

then by eqs. (16), (18)and (20), (21), (23) 

d(W)) o WdW 
+ 5 ~  + 

. p W 2 dt 

to W W co 
.to x + 2 f ~  - -  x 

p ~ w p 

d(W) ow,d  
p dt N p W dt 

(A.25) 0 + 2E~ . W ton 
- -  - -  X - -  

W p 

by eq. (14) 

1 d [ W 2 - U 2 t  _ ,oNd~ ~Ow 1 dW 

t J N grad T x grad s = - C  1 pWt'  dt 9 p dt + p p W dt 

(A.26) - 2 ' ~ f ~ .  n 
P 

where C1 is given at eq. (2.6) so that by eqs. (5), (12), 
(15) and (26), eq. (4) may be written As above in eq. (31) 

(A.31) 

d ( ~ )  (o N 1 , d  ¢ow d~ ¢~vd~ to d ( W ) _ t o  d ( W )  _ (o N d~ (A.32) 
dt - p plfVt dt (pWt') P ~[ + P ~ p dt p dt W N p dt 

therefore 

C~ d (W2 - U 2 ) 

pWt '  dt 2 

Now 

l W  1 W 
p w ' g r a d  T x  g r a d s = - g r a d  T . g r a d s  x - -  

p W 

d ( W Z - U  2) a n d b y e q . ( 2 5 )  
dt ~ON Wt' + C~ 5 = 0 (A.27) ,,, tasl 

= 1 grad T . ~ \ ? n ] l  
When b = (W/W) then from eq. (2.3) P 

by eq. (8) w ) o d(w) 
at 7 -  = w  .grad W + - .  l t, 1 l a s t  

P ~ - t' (N .  grad T) (A.33) 
1 W P ~ c~n ]1 

+ P ~ .  grad T x grad s but by eq. (22) since N .  grad I = 0 then 

(A.28) N .  grad T = 

W to . grad W = to grad (A.29) 

1 W z 1 
grad ~ -  = W (W . grad W - (curl W) x W) 

1 d W  W 
- W d t  c u r l ( V - U )  x 

but 

and 

by eq.(13) 

W 
n x L 

W 

1 I _ N . grad ( Wz - U2 

so that by eqs. (33), (34) and (16) 

1 W  
p W grad T x grad s 

' (w =C~ pt' 

but 

aw ) 
? ~  - f~ZrN . grad r (A.35) 

to = curl V = curl W + 2E~ (A.36) 

while 

(w) w d W dW (to - 2fl) x - -  
= ~ + W z dt W 

(A.30) (curl W), ? W a w  N 
- ON Os" (A.37) 
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Now by geometry to the sign convention of eq. (14) 

l (-do() / 
i ) o 

ds* ds" 
2 2 

- d o t -  1 OW N ds" dt 
2 0 s "  ds"/2 

OWN _ de 
Os" dt 

but since co, = 0 then by eqs. (36), (37) and (38) 

O W dot 
0 = ~ - ~  + ~  + 2 ~ . n  

(A.38) 

hence 

O W dot 
2 n .  n (A.39) 

ON dt 

Since 

r 
grad r =  - (A.40) 

r 

then by eqs. (35), (39) and (40) 

I W C~ 
p w ' g r a d  T x g r a d s = - -  

pt' 

d~t 
x - W ~ - 2 W ~ .  

Now by eqs. (31), (32) and 
written 

l n - ~ 2 N  . r ]  

(A.41) 

(41), eq. (28) may be 

d [ c o w  I C O N d ~  cow 1 dW (O N 
d t ~ p ] = - - 2 - - - -  + 2 - - f ~ . n .  p dt p W dt p 

dot Cn C1W . (2W~. n + ~2N .r) 
pt' dt pt' 

then by rearrangement and collecting terms 

d [cowl - ( 2  (ON C1 1 dot ( (ON C!) 
d t ~ p W ]  = ~ + p t ' l d t  - 2 ~  + ~ ,  f f t . n  

( n2N'r) C~ ~ . n 4  
pt' W 

and substituting from eq. (15), C2 from eq. (2.7a) 

, dt p W !  pWZt ' ~ + D.. n 

( n2N " r) C1 fl  n + - -  
pt' " W 

(A.42) 

Consider a closed contour on the Bernoulli surface 
(Fig. 3) consisting of elements dl and 

O(d/) 
dl + ~ d n  

of two adjacent streamlines and elements dN and 

O(dN) 
dN + ~ -  dl 

of two adjacent normals, then around this contour 

= I ~ W ] + ~  dN - =-~-~ dU 

(A.43) 

because there is no contribution to W.  dl along the nor- 
mals. But 

dl 
V = dt (A.44) 

is the time taken for a particle to traverse the distance dl. 
Equation (43) then expresses the difference in time for 
particles on adjacent streamlines to traverse between 
two adjacent normals. But by definition 

~ ~ d ~  = curl ( ~ 2 ) .  dS (A.45) 

where 

d S = n d S = d N  x d l = n d N d l  (A.46) 

is the surface element enclosed by the contour. Now, 

I W cur as:  { cur, W+grad( ) x W} 

1 
= ~ 5  ( t o  - 2 K ~ ) .  n d S  

dS 

2 W 
W2 grad W. ~ x dS 

since co. = 0 

2f t .  n 2 
- -  dS - - -  W 2 W 2 

Id w wl dW - to' x N d S  
× w d t  V f 

2 ~ .  n 2 
- - -  dS - - -  W 2 W 2 

dot W ) 
x - ~ - 0 - 0 + 2 f ~ x ~ . N  dS 

=W-~ ~/ +~~.  n dS 

(A.47) 
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hence by eqs. (43), (44), (45), (46) and (47) 

i O(dt) 2 (dc~ ) 
dt aN = W d-t + ~ '  n (A.48) 

Let the mass flow rate through the elemental streamtube 
described by this contour be 

dth = pWt'  dN  (A.49) 

then 
1 ~(dt) aN _ 2 (act ) 

dth ON dt pW2t ' & + ~ " n (A.50) 

which substituted in eq. (42) yields 

cl [COw ) =  2C2 + C, U 2 0(dt) dN 
dt ~pW dth ON dt ( °2 ) 

C1 f~ n +  N r (A.51) 
pt' " W ' 
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